skip to main content


Search for: All records

Creators/Authors contains: "Costello, Daniel J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In this paper, we investigate the problem of decoder error propagation for spatially coupled low-density parity-check (SC-LDPC) codes with sliding window decoding (SWD). This problem typically manifests itself at signal-to-noise ratios (SNRs) close to capacity under low-latency operating conditions. In this case, infrequent but severe decoder error propagation can sometimes occur. To help understand the error propagation problem in SWD of SC-LDPC codes, a multi-state Markov model is developed to describe decoder behavior and to analyze the error performance of spatially coupled LDPC codes under these conditions. We then present two approaches -check node (CN) doping and variable node (VN) doping -to combating decoder error propagation and improving decoder performance. Next we describe how the performance can be further improved by employing an adaptive approach that depends on the availability of a noiseless binary feedback channel. To illustrate the effectiveness of the doping techniques, we analyze the error performance of CN doping and VN doping using the multi-state decoder model. We then present computer simulation results showing that CN and VN doping significantly improve the performance in the operating range of interest at a cost of a small rate loss and that adaptive doping further improves the performance. We also show that the rate loss is always less than that resulting from encoder termination and can be further reduced by doping only a fraction of the VNs at each doping position in the code graph with only a minor impact on performance. Finally, we show how the encoding problem for VN doping can be greatly simplified by doping only systematic bits, with little or no performance loss. 
    more » « less
    Free, publicly-accessible full text available September 7, 2024
  2. Free, publicly-accessible full text available September 4, 2024
  3. In this paper, we examine variable node (VN) doping to mitigate the error propagation problem in sliding window decoding (SWD) of spatially coupled LDPC (SC-LDPC) codes from the point of view of the encoding process. More specifically, in order to simplify the process of generating an encoded sequence with some number of doped code bits, we propose to employ systematic encoding and to limit doping to systematic bits only. Numerical results show that doping of systematic bits only achieves comparable performance to employing general (nonsystematic) encoding and full doping of all the code bits at each doping position, while benefiting from a much simpler encoding process. We then show that the inherent rate loss due to doping can be reduced by doping only a fraction of the variable nodes at each doping position with only a minor impact on performance. 
    more » « less
  4. null (Ed.)
  5. null (Ed.)
  6. null (Ed.)